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Abstract - Category theory allows information fusion to be de-
fined properly. Key to the definition of information fusion is the
notion of the output under fusion being superior in some way
to the output of simple classification systems alone. The def-
inition therefore relies upon the construction of natural trans-
formations suitable to the researcher. This paper discusses the
meaning of such constructions.
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1 Introduction

It has been noted by several researchers (e.g., see [1, 2]) that
a definition of information fusion (also referred to as data
fusion) requires the final information generated to be of su-
perior quality, in some tangible way, than the information
available from the primary sources. The authors developed
this idea using category theory and optimization problems
in [3, 4], but did not go any further to explore the math-
ematical nature of tangibly measuring the required superi-
ority. We will describe in this paper the theory necessary
to explain this. The hoped for outcome of such discus-
sion and examination is for data fusion algorithm develop-
ers to consider how they will demonstrate the superiority of
the fusion algorithms to the original information sources.
We must at this time restrict our discussion to classifica-
tion systems (sensor -processor-classifier systems) which
sense events and label them according to their inherent al-
gorithms.

2 Information Fusion as Defined by
Category Theory

2.1 Probabilistic Construction of the Event-
Label Model

Let C be a complex of conditions [5] for a repeatable ex-
periment, and letΩ be a set of outcomes of this experi-
ment withT ⊂ R being a bounded interval of time. Inter-
val T sortsΩ such that we callE ⊆ Ω× T anevent-state.
An event-state is then comprised of event-state elements,
e = (ω, t) ∈ E, whereω ∈ Ω andt ∈ T. Thuse denotes
a stateω at an instant of timet. Let Ω × T, be the set of
all event-states for an event over time intervalT. Let E be

aσ-field onΩ×T, andµ be a probability measure defined
on the measurable space(Ω × T, E , µ). Then the triple
(Ω× T, E , µ) forms a probability space [6].

The design of a classification system involves the abil-
ity to detect (or sense) the occurrence of an event inΩ, and
process the event into a label of setL. For example, design
a system that detects airborne objects and classifies them
friendly or unfriendly. To do this a classification system
relies on several mappings, which are composed, to provide
the user an answer (from the event, to the label). SinceE
is a σ-field on Ω × T, then letE ∈ E be any member of
E . Then a sensor,s, is defined as a mapping fromE into a
(raw) data setD. We denote this with the diagram

E
s // D

so s(e) = d ∈ D for all e ∈ E. The sensor is de-
fined to produce a specific data type, so the codomain of
s, cod(s) = D, whereD is the set describing the data out-
put of mappings. A processor,p, of this system must have
domain, dom(p) = D, and maps to a codomain of features,
F (a refined data set), cod(p) = F. This is denoted by the
diagram

D
p // F .

Further, a classifier,c, of this system is a mapping such that
dom(c) = F and cod(c) = L, whereL is a set of labels
the user of the system finds useful. This is denoted by the
diagram

F
c // L .

Therefore, we can denote the entire classification system,
which is diagrammed as

E
s // D

p // F
c // L ,

asA, the classification system over an event-stateE, where
A is the composition of mappings

A = c ◦ p ◦ s.

Thus,A is anL-valued random variable which maps mem-
bersE ∈ E into the label setL and is diagrammed by

E
A // L .

Consider the simple model of a multi-sensor system
using two sensors in Figure 1. The setsEi, for i ∈ {1, 2},
are sets of event-states. The label setLi can be as sim-
ple as the two-class set{target, non-target}or could have
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E1
s1 // D1

p1 // F1
c1 // L1

E2
s2 // D2

p2 // F2
c2 // L2

Figure 1: Simple Model of a Dual-Sensor System.

a more complex structure to it, such as thetypesof targets
and non-targets, paired with a ranking of measure, for ex-
ample [7], in order to define the battlefield more clearly
for the warfighter. Now the diagram in Figure 1 repre-
sents a pair of classification systems having two sensors,
two processors, and two classifiers, but can easily be ex-
tended to any finite number. Now consider two sensors
not necessarily co-located. Hence they may sense different
event-state sets. Figure 1 models two sensors with differ-
ing fields of view. Performing fusion along any node or
edge in this graph could possibly result in an elevated level
of fusion [2]–that of situation refinement or threat refine-
ment, since we are not fusing common information about a
particular event or events, but we may be fusing situations.

There are at least two other possible scenarios that Fig-
ure 1 could depict. The sensors can overlap in their field
of view, either partially or fully, in which case fusing the
information regarding event-states within the intersection
may be useful. Thus, a fusion process may be used to in-
crease the reliability and accuracy of the classification sys-
tem, above that which is possessed by either of the sensors
on its own. LetE represent that event-state set that is com-
mon to both sensors, that is,E = E1 ∩ E2. Hence, there
are two fundamental challenges regarding fusion. The first
is how to fuse information from multiple sources regarding
common event-states (or target-states, if preferred) for the
purpose of knowing the event-state (presumably for the pur-
poses of tracking, identifying, and estimating future event-
states). This is commonly referred to as Level1 fusion (or
Level0 fusion) Object Assessment. The second and much
more challenging problem is to fuse information from mul-
tiple sources regarding event-states not common to all sen-
sors, for the purpose of knowing the state of a situation (the
situation-state), such as an enemy situation or threat assess-
ment. These are the higher Levels2 and3, Situation As-
sessment and Impact Assessment. We distinguish between
the two types of fusion scenarios discussed by calling them
event-state fusionandsituation-state fusionrespectively.
We will refer to mathematical models of classification sys-
tems, such as the one in Figure 2, as event-label models,
so that Figure 2 represents an event-label model of a dual
sensor process.

The only restriction necessary for the usefulness of
this model is that a common field of view,E, be used. Con-
sequently,D1 andD2 could actually be the same data set
under the model, whiles1 ands2 could be different sen-
sors. We will refer to a finite number of families of clas-
sification systems, such as the two in Figure 2, which we
wish to explore the fusion of, as a fixed classification cate-
gory. ForE considered as a category of sets, and a fixed
label setL, we note thatLE , is the functor category of all
such classification systems, so that our fixed classification

D1
p1 // F1

c1 // L1

E

s1

>>}}}}}}}}

s2

  A
AA

AA
AA

A

D2
p2 // F2

c2 // L2

Figure 2: Two Classification Systems with Overlapping
Fields of View.

category is a subcategory ofLE . Each classification system
comprises a fixed branch ofLE (ie., a functor or a family
of functors). Equally true is the fact that if we want to
compete classification systems, we must test them over the
same sample space as well. Therefore, we choose the func-
tor categoryLE, with a fixed L and a fixed E, to compete
the classification systems over. There exists convergence
theorems (e.g., see [8, 9, 10]) which allow us to treat E as if
it werethe sample population, with the caveat that our test
then is only as good as it is representative of the operational
circumstances of the real-world population.

2.2 Construction of a family of classification
systems

Now suppose we have a parameterθ ∈ Θ, which is possibly
multidimensional. Then it is common that there is a family,
{cθ : θ ∈ Θ}, of classifiers so that for eachθ ∈ Θ, each
composition,

cθ ◦ p ◦ s

describes an event-state model on fixedE ∈ E , and fixed
setsD,F, andL. The corresponding family

A = {Aθ | θ ∈ Θ},

whereAθ = cθ ◦ p ◦ s, is a family of classification systems.
Thus, Θ acts as an indexing set for definingA. One can
extend this idea to include other index setsΓ and∆, so that
the composition

cθ ◦ pδ ◦ sγ ,

whereθ ∈ Θ, δ ∈ ∆, γ ∈ Γ, is a classifier,A(θ,δ,γ).

2.3 Defining Fusion Rules from the Event-
Label Model

At this point we begin to consider categories generated by
the model’s sets of data. LetD = (D, IdD, IdD, ◦) be the
discrete category generated by data setD. We use these
categories to define fusion rules of classification systems.

Definition 1 (Fusion Rule ofn Fixed Branches of Fam-
ilies of Classification Systems).Let Sn be a fixed classi-
fication category withn branches. For eachi = 1, . . . , n,
let Oi ∈ CAT be a small category of data corresponding
to theith branch’s source of data to be fused (this could be
raw data, features, or labels). Then the product

π(n) =
n∏

i=1

Oi



is a product category. For any particular category of
data,O0, the exponential,Oπ(n)

0 , is a category of fusion
rules, each rule of which maps the products of data objects
Ob(π(n)) to a data object inOb(O0), and maps data ar-
rows inAr(π(n)) to arrows inAr(O0). These fusion rules
are functors,R, which make up the objects of the category.
The arrows of the functor category are all the natural trans-
formations between them. We designateFROn(O0) to be
this functor category of fusion rules.

If theOi are categories generated from sensor sources
(i.e., outputs), then we callOπ(n)1

0 a category of data-fusion

rules and use the symbolsDπ(n)1
0 . The fusion rule branch

would then be diagrammed like this:

E
<s1,...,sn> // π(n)1

r // D0
p // F

cφ // L,

(1)
whereD0 is the receiving category,r is the fusion rule, and
< s1, . . . , sn > is the unique arrow generated by the prod-
uct π(n)1. We will not diagram any more of these, but
rather note that the diagram can be written more concisely
by

< s1, . . . , sn > ◦r ◦ p ◦ cφ (2)

If the categories are generated by processor sources, then
call Oπ(n)2

0 a category of feature-fusion rules and use the

symbolsFπ(n)2
0 . This fusion rule branch is described by

the composition:

< s1, s2, . . . , sn > ◦ < p1, p2, . . . , pn > ◦r ◦ cφ (3)

whereπ(n)1 is the product of data categories, the range of
the first arrow,π(n)2 is the product of feature categories,
the range of the second arrow, r is now the fusion rule on
this product of feature categories, and< p1, p2, . . . , pn >
is the unique arrow generated by the original processors
on the productπ(n)2. Finally, if they have classifiers as
sources, then call them label-fusion rules (or, alternatively,
decision-fusion rules) and use the symbolsLπ(n)3

0 . This
fusion rule branch is:

< s1, . . . , sn > ◦ < p1, . . . , pn > ◦ < c1, . . . , cn > ◦ rφ

(4)
whererφ is a fusion rule for each parameter (in order to
generate an appropriate family of classification systems),
and< c1, . . . , cn > is the unique arrow generated by the
original classifiers on the productπ(n)3. ( We removed
the parameters from the classifiers and replaced them with
a single, possibly vector valued, parameter on the fusion
rule).

A fusion rule could be a Boolean rule, a filter, an esti-
mator, or an algorithm. Notice that our definition of fusion
rule does not include a qualitative component; there is no
necessary condition of “betterness” for a fusion rule. The
result of applying a fusion rule to an existing set of funda-
mental branches could result in output considerably worse
than existed previously. This does not affect the definition.
First we define fusion rules as the key component of the
fusion process. Next, we pare down the category to a sub-
category which does include a qualitative component, with
one suggested way of accomplishing this. We now desire
to show how defining a fusor (see Definition 4) as a fusion

rule with a constraint changes the Event-State model into an
Event-State Fusion model. Continuing to consider the two
families of classification systems in Figure 2, it is evident
that a fusion rule can be designed which would apply to ei-
ther the data sets, the feature sets, or the label sets (though
special care needs to be taken when the actual labels are
not identical in definition). Given a fusion ruleR for the
two data sets as in Figure 2, our model becomes that of Fig-
ure 3. A new data set, processor, feature set, and classifier
may become necessary as a result of the fusion rule having
a different codomain than the previous systems. The label
set may change also, but for now, consider a two class label
set, that of

L = L1 = L2 = {Target, Nontarget},

where the targets and non-targets are well-defined across
classification systems (i.e., each classification is identifying
targets that satisfy the same definition of what a target is).

D1

E

s1

??~~~~~~~~

s2

��@
@@

@@
@@

@
R +3 +3 D3

p // F
c // L

D2

Figure 3: Fusion Rule Applied on Data Categories from
Two Fixed Branches.

Now at this point we may consider, in what way is
the process modeled in Figure 3superior to the original
processes shown in Figure 2 whenL = L1 = L2 (we will
deal with the caseL1 6= L2 later)? One way of comparing
performance in such systems is to compare the processes’
receiver operating characteristics (ROC) curves, which we
will show in Section 2.5.

2.4 Fusion Rules

2.4.1 Object-Fusion

There are, of course, multiple descriptions in the literature
to “types” of fusion. There isdata-fusion,feature-fusion,
and decision-fusion. There is data in-feature out fusion
[11] and many more. We would like to codify what should
be meant by these expressions by introducing, in its most
basic form, a vernacular for fusion which is intuitive, yet
has its definition rooted in mathematics. We start by as-
suming we have a finite number of objectswe wish to fuse
together. What does the finite set of fusion rules look like?
How can we describe in an observational way what is go-
ing on? Once the definition of fusion is established, we
can move on to labeling types of fusion under certain model
asumptions.

Definition 2 (Object-Fusion Category). Let
{Oi | i ∈ {1, . . . ,m}} be a finite sequence of non-empty
categories (possibly discrete). Then

m∏
i=1

Oi



defines a product category. Let

π(m) =
m∏

i=1

Oi

for fixedm ∈ N. Then for a fixed categoryO, we have that

FRπ(m)(O) = Oπ(m)

is a functor category. The functor categoryFRπ(m)(O)
is called anπ(m)-Fusion category relative toO to denote
the functors are fusingm Oi -objects, and as necessary,
their accompanying arrows into a single object and arrow
in O. When the relationship of all theOi objects can be
made clear, by simply calling them “objects”, then we call
FRπ(m)(O) the Object-Fusion category relative toO (re-
gardless of the value ofm).

It’s important to note in our definition of fusion rules
we did not put forward the notion of defining fusionrules
in terms of performance. We will need a second mathemat-
ical definition to narrow the category of fusion rules down
to a subcategory of fusion rules, which can be ordered ac-
cording to their performance in some manner. First we’ll
consider further delineating the types of fusion rules within
the Event-State model.

2.4.2 Types of Fusion Rules

We consider digraphG, as depicted in Figure 4.E is an
event in theσ−field, E . The setsD1 andD2 are objects of
a finite collection of categories of data sets, while the sets
F1 andF2 are objects of a finite collection of categories of
feature sets. The label setsL1 andL2 are the objects of a
finite collection of categories of label sets (and we still re-
quire thatL1 = L2). The nodes in digraphG along which

D1
p1 // F1

cθ // L1

E

s1

88ppppppppppppp

s2
&&NNNNNNNNNNNNN

D2
p2 // F2

cφ // L2

Figure 4: Digraph G.

fusion rules are generally applied are at the data, feature,
and label categories. Using category theory, we can also
describe that there should theoretically be nodes at thear-
rowsof digraphG for fusion rules as well, though we have
no non-trivial example at this time of a rule or algorithm
that does this without using the pointwise outputs of the
arrows. So, theoretically, we could possibly have sensor-,
processor-, and classifier-fusion rules (in the sense of these
being arrows and not speaking of their outputs in this man-
ner).

2.5 Operating Characteristic Functionals

Definition 3 (Similar Families of Classification Systems).
Two families of classification systemsA andB are called

similar if and only if they operate on the sameσ-field and
their output is the same well-defined label set.

Suppose we have a fixed classification category
LE, and let A be an object in this category. Then
for L consisting of k labels, there exists a vector in
(n = k2 − k)-ROC space described by ann-vector vA,
where

vA = (p2|1(A), . . . , pk|1(A), . . . , pk−1|k(A)).

The proof is self-evident sinceE is a sample space. We call
this vector theoperating characteristicvector, and we let

V =
{
vA | A ∈ Ob(LE)

}
(5)

and
V =

(
P(V ),Ar(V ), Id(V ), ◦

)
, (6)

whereP(V ) is the power set ofV . The categoryV is
the category of operating characteristic families with un-
determined non-identity arrows (we will determine them
presently). Now, consider the category

C = (P(Ob(LE)), Id(LE), Id(LE), ◦)

whose objects are sets of classification systems. ThenA ∈
Ob(C) for each family of classification systemsA. Let

F : C −→ V (7)

be an operating characteristic functor, which maps power
sets of classification systems to the set of operating charac-
teristics associated with them. Let

ξ : V −→ P (8)

be a functor whereP is a poset, thought of as a category
induced by a partial order,≥, of its elements. Thenξ is a
functor taking objects consisting of sets of operating char-
acteristics into a value ofP. We do not need to define the
rule at this point. LetA0, A1 ∈ C, such that

F(A0) = fA0

and
F(A1) = fA1

where the outputs are families of operating characteristics.
Then the diagram

fA0

ξ //

g

��

ξ(fA0) = p0

≥

��
fA1

ξ // ξ(fA1) = p1

wherep0, p1 ∈ P, commutes for some unique (up to iso-
morphism)g. This g is an induced partial order onV.
Thus, for every pair of families of classification systems,
A0, A1 ∈ C, we have that the rectangle

A0
F //

�

��

F(A0) = fA0

ξ //

g

��

ξ(fA0) = p0

≥

��
A1

F // F(A1) = fA1

ξ // ξ(fA1) = p1

(9)



commutes when we impose the criterionA0 � A1 iff (ξ ◦
F)(A0) ≥ (ξ ◦ F)(A1), so that the functorξ ◦ F is a natural
transformation. It is precisely the arrows likeg, which
make such rectangles commute, that belong in the category
V. It is also the arrows induced from the partial order�,
which provide unique maps from one classification family
to another, which will allow us to define the fusion process.

2.6 Defining Fusors

We are now in a position to define a way in which we can
compete fusion rules. Suppose we have a fixed classifi-
cation system such as that in Figure 2. Each branch of
the system (whether fixed, or associated with a fusion rule)
has a ROC manifold that can be associated with the family
of classification systems, and we now have a viable means
of competing each branch. If we can only choose among
the two classification systems, take the one whose associ-
ated ROC functional is greater. Therefore, we can also
compete these two classification systems with a new sys-
tem that fuses the two data categories (or the feature or la-
bel categories for that matter) by fixing a third family of
classification systems, which is based on the fusion rule,
and finding the ROC functional of the event-to-label sys-
tem corresponding to the fused data (features). If the fused
branch’s ROC functional is greater than either of the origi-
nal two, then the fusion rule is a fusor. Repeating this pro-
cess on a finite number of fusion rules, we discover a finite
collection of fusors with associated ROC functional values.
Since the subcategory of fusors is partially ordered, the best
choice for a fusor is the fusor corresponding to the largest
ROC functional value. Do you want to change your a pri-
ori probabilities? Simply adjustγ in the ROC functional’s
data and recalculate the BOTs for each system. Then cal-
culate the ROC functional for each corresponding ROC and
choose the largest value. The corresponding fusor is then
the best fusor to select under your criteria. Therefore, given
a finite collection of fusion rules, we have for fixed ROC
functional data a partial ordering of fusors.

Definition 4 (Fusor over ROC Manifolds). Let I ⊂ N
be a finite subset of the natural numbers, withmax I = n.
Given{Ai}i∈I a finite collection of similar families of clas-
sification systems, letOπ(n)

0 be the category of fusion rules
associated with the product ofn data sets. LetFm be the
ROC functional on the associated ROC manifolds of the
families of classification systems, both original and fused,
wherem = k2 − k, with k being the number of classes of
interest in the classification problem. Let

(
γ,α

)
be the es-

tablished data for the problem. Then given thatfAi is the
ROC curve of theith family of classification systems, and
fR the ROC curve of the classification familyAR, associ-
ated with fusion ruleR ∈ Ob(Oπ(n)

0 ), we say that

Ai � Aj ⇐⇒ Fm(fAi) ≥ Fm(fAj ) (10)

so that ifAR � Ai for all i ∈ I, thenR is called a fusor.

There is then a category of fusors, which is a subcate-
gory ofOπ(n)

0 , and whose arrows are induced by the ROC
functional,ξ, such that given objectsR andS of this sub-

category, then there exists an arrow,R
&−→ S if and only

0.4
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0
0.40.20

Ptp
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Figure 5: ROC Curves of Two Competing Classification
Systems.

if AR � AS if and only if pR ≥ pS. This can be seen in
the commutativity of the rectangle constructed from Equa-
tion 9,

R //

&

��

AR
F //

�

��

F(AR) = fAR

ξ //

g

��

ξ(fAR
) = pR

≥

��
S // AS

F // F(AS) = fAS

ξ // ξ(fAS
) = pS

where we can see that in order for the rectangle to commute,
that& must be a partial order.

We are now in a position to define the fusion processes.

Definition 5 (Fusion-Rule Process).Given a fixed classi-
fication problem defined by the categoryLE, a fusion-rule
process is an element ofOb(LE).

We didn’t really whittle this down from the category
of classification systems, because a fusion rule could be the
rule “choose classification system X”, which doesn’t nec-
essarily give a performance improvement. The next defi-
nition is the one of interest, since it defines the fusion with
the necessary addition of a qualitative element.

Definition 6 (Fusion Process).Given a fixed classification
problem defined by the categoryLE, and a natural transfor-
mation from this category to a category defined by a poset
P = (X,≥), let FUSLE be the subcategory of classifica-
tion systems induced by the partial ordering. This category
has as objects precisely those objects ofLE which have an
arrow pointing to every fixed branch. We then say a fusion
process is an element ofOb(FUSLE), and we can call this
category the category of fusion processes.

We have now given a definition of the fusion process
which contains everything necessary. As an example, sup-



pose we start with the system
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p1 // F1
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with L ak-class label set. LetAθ = aθ ◦ p1 ◦ s1 andBφ =
bφ◦p2◦s2, and consider a functionalFk on the ROC curves
fA and fB whereA and B are defined as families of the
respective classification systems shown (Fk being created
under the assumptions and data of the researcher’s choice).
Then, given fusion rulesS, such as that in Figure 6, andT
and a second fusion system
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<s1,s2> // D1 ×D2

T //
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D3
p3 // F3

dκ // L

D2

let fS and fT refer to the corresponding ROC curves to
each of the fusion rule’s systems (as a possible exam-
ple of ROC curves of competing fusion rules see Fig-
ure 5 ). This leads us to say that if we have the inequalities
Fk(fS) ≥ Fk(fA), Fk(fS) ≥ Fk(fB), Fk(fT) ≥ Fk(fA),
andFk(fT) ≥ Fk(fB), then we say thatS, T are fusors.
Furthermore, supposeFk(fS) ≥ Fk(fT). Then we have
thatS � T. Thus,S is the fusor a researcher would se-
lect under the given assumptions and data. Figure 6 is a
diagram showing all branches and products (along with the
associated projectors) in category theory notation.
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Figure 6: Data Fusion of Two Classification Systems.

3 Conclusions

Fusion, by definition, requires a qualitative difference be-
tween the final output and the output of the original
sources [1]. The construction of definitions for level1 infor-
mation fusion demonstrates by way of functors and natural
transformations two main points.

First, a classification system should have a characteris-
tic that can be identified as a performance characteristic of
the classification system. It is essentially a functor which
maps the classification system to this characteristic. If the
characteristic is unique for each classification system, then
one should be able to construct a second functor which
maps the characteristic into a linear order. If the charac-
teristic is not unique, we can map the characteristic into a
partial order.

Second, the selected ordering (linear or partial) in-
duces an ordering on both the characteristics and the clas-
sification systems. The usefulness of the result is depen-
dent upon the size of the equivalence classes that are cre-
ated, particularly for those values in the ordering which are
likely to show up in practice. Examples of partial orders
can be found with receiver operating characteristic (ROC)
manifolds in [4, 3, 10]. Similarly ROC manifolds could be
mapped to a linear ordering (under a ROC manifold domi-
nance scheme), but the resulting equivalence class includes
all ROC manifolds which intersect. It is thus huge and
nearly worthless in practice, being desirable but only useful
if your comparison happens to exhibit ROC dominance.
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